If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-66=-28
We move all terms to the left:
q^2-66-(-28)=0
We add all the numbers together, and all the variables
q^2-38=0
a = 1; b = 0; c = -38;
Δ = b2-4ac
Δ = 02-4·1·(-38)
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{38}}{2*1}=\frac{0-2\sqrt{38}}{2} =-\frac{2\sqrt{38}}{2} =-\sqrt{38} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{38}}{2*1}=\frac{0+2\sqrt{38}}{2} =\frac{2\sqrt{38}}{2} =\sqrt{38} $
| -5(x-2)-9=1 | | 2x/14=18 | | 22/8=110/t | | 4^(3x+5)=16 | | x-5=10+2 | | 24/3=84/m | | -3((6y+15)/3)+4y=-13 | | x+x+2+20-(x+x+2)=20 | | 28/3=84/m | | 5c+17=9(-c+12+3c | | (1/x^2)+10=35 | | 360(1/x-1/x+5)=48/60 | | 4x^2-5x+7=2x+7 | | 4(2a-5)=6(a+2) | | 6x+54=-3 | | 32x-18=-20x-10 | | 3y•y=3y2 | | 3x=35-4 | | 4x2+36x+36=0 | | 2-3z=7-48 | | 5-y/2=3y/4-y | | (3x-1)+(4x+1)+(3x)=70 | | 4=(1/4)-5x | | (8x)X(4x)=360 | | 4z/9-4=-3 | | 11/6x=x+5/2 | | 28h-20=11 | | (-2x+7)=(-x+9) | | 2x+6-4=3x-2 | | 1/3x-3/2=1/4x-2 | | -(0,04x^2)+9x-350=0 | | 3u+17=6u-13 |